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Abstract

Problems on large stretching, torsional and bending deformations of a naturally twisted rod, loaded with end forces and moments,
are considered from the point of view of the non-linear three-dimensional theory of elasticity. Particular solutions of the equations
of elastostatics are found, which are two-parameter families of finite deformations and which possess the property that, for these
deformations, the initial system of three-dimensional non-linear equations reduces to a system of equations with two independent
variables. The use of these equations enables one to reduce certain Saint-Venant problems for a naturally twisted rod to two-
dimensional non-linear boundary-value problems for a planar domain in the form of the cross-section of a rod. Different formulations
of the two-dimensional boundary-value problem for the cross-section are proposed, which differ in the choice of the unknown
functions. A non-linear problem of the torsion and stretching of a circular cylinder with helical anisotropy, which is reduced to
ordinary differential equations, is considered as a special case.
© 2006 Elsevier Ltd. All rights reserved.

Saint-Venant problems for a naturally twisted rod have been considered in a number of publications!™ within the
framework of the linear theory of elasticity.

1. Transformation to a two-dimensional boundary-value problem

Consider an elastic body which, in the reference configuration, has the form of a naturally twisted rod with a
rectilinear axis. The body has been formed by a helical motion along the x3 axis of a planar figure o which is located
in a plane perpendicular to this axis. In describing the deformation of the elastic medium, we shall use non-orthogonal
curvilinear coordinates! y1, y, y3, which are connected with the Cartesian coordinates of the reference configuration
X1, X2, x3 by the relations

X, = Y COSOX3 —Yy,Sin0X3, X, = y;SINCLX3+ y,CO80x3, X3 = y3; O = const (1.1)

as Lagrange coordinates. Here « is the natural twist angle, and y; and y; are Cartesian coordinates in the plane of the
domain o. We shall write the equation of the piecewise-smooth contour which bounds the domain ¢ in parametric
form: y; =y1(¢), y2 =y2(f) and we shall refer to the helical surface formed by the helical motion of the curve do along
the x3 axis as the lateral surface of the rod. Assuming that the parameters t and y3 are Gaussian coordinates, we will

“ Prikl. Mat. Mekh. Vol. 70, No. 2, pp- 332-343, 2006.

0021-8928/$ — see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2006.06.016


dx.doi.org/10.1016/j.jappmathmech.2006.06.016

L.M. Zubov / Journal of Applied Mathematics and Mechanics 70 (2006) 300-310 301

write the equation for the lateral surface of the body in the form
r(f,y3) = y(O)d; + y()d, + ysi; 1.2)
d, = ijcosay;+1i,sinay;, d, = —i;sinoy; +i,cosay;, (1.3)

where r=x,,i,, is the radius vector of a point of the surface and i,,(m=1, 2, 3) are the constant unit vectors of the
Cartesian coordinates. The unit vector of the normal to the lateral surface

n= Yoy = yidy + 0y, y; +Y,3,)is

=nd;,, s=123; d;=1I

J 2 .2 2 . L2 s (1.4)
yi +y2 0y +Y2y2)
is found using relations (1.2). A derivative with respect to ¢ is denoted by a dot. The equality

ny = 0(yany = yin,) (1.5)

follows from expression (1.4), and the vector nid;+n,d, is normal to the plane of the curve do. The Cartesian
coordinates of the points of the deformed body (the Euler coordinates) are denoted by Xi(k=1, 2, 3), and we will
consider the following two-parameter family of deformations of the naturally twisted beam

Xy = uy(yy, ¥2)C08Wy; —uy(yy, ¥,)sinyys

Xy = u (yy, y)sinyy; + uy(yy, y,)cosyys (1.6)

X3 = Ay;+u3(y, y2); Ay = const
The radius vector of a point of the deformed body R = Xy is represented in the form
Ry, y2 ¥3) = why +Lysh,
(1.7

h, = ijcosyy;+i,sinyy;, h, = —i;sinyy;+i,cosyy;, h; =i,

Using representation (1.7) for the gradient of the deformation C=grad R, where grad is the gradient operator in
Lagrange coordinates, we obtain (uy, = duy/dyp)

C(y;» y2 ¥3) = (d; + auy,i3) ® OR/dy, + (d, — ay,i;) ® IR/dy, +

+i3 ® dR/dy; = Cyy(y), y,)d, ® hy (18

Cop = Uy Cy = 63|—wu2, Cy, = 6‘32+\uu1, Cypy = Cyz+ A

E?gkz—(xyluk’2+(xy2uk’l; p=12, k=1,2,3 (19)
A measure of the Cauchy deformation

G=C-C" =G,y,y,)4,®d,; G, = C,,Cppn (1.10)

isdetermined from relations (1.9), that is, the components of the tensor G in the orthonormalized basis d; are independent
of the coordinate y3.

The geometric meaning of representations (1.6) lies in the fact that a cross-section of the rod, which is a distance y3
from the origin of the coordinates, undergoes a certain planar deformation which is specified by the functions #; and
uy, a finite rotation about the x3 axis by an angle (I — a)y3, a translational displacement along the axis by an amount
(A — 1)y3 and warping, which is described by the function u3. The case when {i=0 corresponds to a straightening
deformation of the naturally twisted rod during which the rod is converted into a prismatic beam. Neglecting mass
forces, we write the equations for the statics of an elastic body using the non-symmetric Piola stress tensor D>

divD = 0 (1.11)
D =dW/dC =P-C, P =2dW/dG (1.12)
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Here, div is the divergence operator in Lagrange coordinates, P is the symmetric Kirchhoff tensor and W(G) is the
specific potential energy of deformation.

It is henceforth assumed that the specific energy of the elastic material W, which is considered as a function of
the components Gy of the Cauchy measure of deformation in the basis dg, is explicitly independent of the coordinate
y3 =x3 but can depend on the coordinates y1, y2: W= W(Gg, y1, y2). We shall say that such materials are homogeneous
with respect to the y3 coordinate. The above-mentioned class of materials includes isotropic elastic media with an
arbitrary inhomogeneity along the y; and y, coordinates, which are measured in the plane of the cross-section o and,
also, several kinds of anisotropic media.

Since the quantities Gy are independent of the y3 coordinate, it follows from relations (1.12) that, in the case of
a material which is homogeneous with respect to the y3 coordinate, the components Pg =d; - P - dj of the Kirchhoff
stress tensor will be functions solely of the coordinates y; and y>. On the basis of relations (1.8), the Piola stress tensor
for a deformation of the form (1.6) will therefore have the representation

D(y;, y2, v3) = Dy (yy, y2)d, ® hy (1.13)

Substituting expression (1.13) into equality (1.11), we obtain the scalar form of the equilibrium equation for the Piola
stresses
D -yD;, =0, Dy+yDy =0, D3 =0

~ (1.14)
Dy=Dyy 1+ Dy =0y Dy s + 0y D3y, k= 1,2,3

Taking account of the equation of state (1.12) and relations (1.8)—(1.10), (1.13), we see that Eqgs. (1.14) are a system
of three scalar equations in three functions of two variables ux(y1, y2) (k=1, 2, 3).

The scalar form of the boundary conditions n D =0 on the lateral surface of the rod which is assumed to be free,
load- in accordance with relations (1.4), (1.5) and (1.13), is as follows:

ni(Dy+oy,Dyy) +ny(Dyp~oyDy) = 0, k=1,2,3 (1.15)

Since, according to expression (1.4), the vector components of the normals n; and n, are independent of the y3
coordinate, the boundary conditions (1.15) do not contain the y3 variable and, together with the equilibrium Eq. (1.14),
form a two-dimensional boundary-value problem for the plane of the domain o with the unknown functions ux(y1, y2).
The constants {s and A are assumed to be specified parameters.

Hence, the assumptions (1.6) concerning the nature of the deformation of an elastic medium reduce the initial
non-linear three-dimensional problem for a naturally twisted rod to a two-dimensional boundary-value problem for
the planar domain o in the form of the cross-section of the rod.

Suppose ur(y1, y2) is a certain solution of boundary-value problem (1.14), (1.15). Using relations (1.8)—(1.10),
(1.12) and (1.13), it can be verified that the functions

Uy = uycosK —u,sink, ui = u;sink+u,cosx, u¥ = uz+y (1.16)

where k and <y are arbitrary real constants, also satisfy Egs. (1.14) and conditions (1.15).

The insensitivity of the boundary-value problem in the cross-section to the substitution (1.16) means that the position
of the elastic solid after deformation is defined, apart from a rotation about the X3 axis and translational displacement
along the same axis. This non-uniqueness of the solution can be avoided by subjecting the unknown functions to
additional conditions. The integral relations

”u3do =0, ”(cos[_’)—l)dc =0 (1.17)

where
Uy +uy,

cosP =
2 2 (1.18)
’\/(ul,l +uy o)+ (uy  — g )

are one of the versions of these conditions. Here and henceforth a double integral is taken over the domain o.
The quantity 3, defined by formula (1.18), is known to be [Ref. 6, p. 91] the angle of rotation of the material fibres
accompanying a finite planar deformation. The second constraint (1.17) therefore implies that, on average, there is no
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rotation of the particles of the rod about its axis through the cross-section y3 =0. The first constraint of (1.17) implies
that, on average, the axial displacement of the particles of the rod when y3 =0 is zero throughout the cross-section.

When account is taken of the constraints (1.17), we would expect the solution of problem (1.14), (1.15) to be unique.
In fact, non-uniqueness of the solution would imply the existence of some forms of loss of stability of the rod for which
the deformation is the same for all cross-sections. If this type of equilibrium bifurcation is also possible, then it is for
very large values of the parameters ¢ and A — 1.

We will now consider another two-parameter family of deformations of a naturally twisted beam, which is analogous
to a deformation involving the three-dimensional bending of a prismatic body’

X; = v, ¥2) +1y;

N><
!

= V(¥ ¥2)cos®y; —V3(vy, ¥,) sinwysy (1.19)
X3 = Vy(y, yp)sinwys + V3(y;, yo)cosmy;; [, @ = const

In this case, the helices y; =const and y, = const, the axes of which are parallel to the unit vector i3, are converted
after deformation into helices, the axes of which are parallel to the unit vector i; and the lateral surface of the beam is
transformed into a helical surface, the axis of which coincides with the X; axis. When [ =0, the helical lateral surface
of the beam is transformed after deformation into a sector of a surface of revolution, that is, the naturally twisted rod
is transformed into a curved beam with a circular axis located in the X,X3 plane. According to equalities (1.19), the
radius vector of a point of the deformed body has the form

R = vy, y)g +1v:g, k=123

. . . . . . (1.20)
g, =1, g = i,cosmy;+i;sinwy;, g; = —i,sinwy;+i;cosmy,
and, for the gradient of the deformation and the measure of the Cauchy deformation, we obtain
C= Cmn(yl’ y2)d1n®gn’ m,n = 1’2’ 3 (121)
Cp,, = U, Cy = &31 +1, C3 = &32—(01)3, Cyy = 6‘33+wv2; p=12 12
5‘3,,E(xy21),,,]—01y11),,,2 '
G = leCnIdm ® dn (123)
The Piola stress tensor
D(}’], )’2, y}) = Dmn(yl’ yl)dm®gn (124)

follows from this in the case of an elastic medium which is homogeneous about the y3 coordinate.
By virtue of relations (1.11), (1.20) and (1.24) and the last equality of (1.14), the equilibrium equations with respect
to the stresses in the three-dimensional bending problem are written in the form

Dy =0, Dy—wDy =0, D3—0Dy, =0 (1.25)

The boundary conditions for the stresses on the lateral surface of the rod in the case of bending are similar in form
to conditions (1.15). The two-dimensional boundary-value problem in the functions v,(y1, y2, y3) (n=1, 2, 3) is
insensitive to the substitution

vf = v, +M, V¥ = v,c080 - V;ysin0, V¥ = V,sinO + v;co0s0 (1.26)
where m) and 6 are arbitrary real constants. The non-uniqueness of the solution of the form (1.26), associated with the

possibility of an arbitrary rotation of the body about the X; axis and arbitrary translational displacement along this
axis, is removed after the imposition of conditions analogous to (1.17) and (1.18),

Uy 1+ U35 _
[J(vi=ypdo = o, H( - -—1]do = 0 (1.27)
«/(92,1*““3,2) +(V3 -0y ,)
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2. Forces and moments acting on the ends of the beam

The families of finite deformations (1.6) and (1.19) represent an interchange in the equations of non-linear elasto-
statics which leads to a theory of the torsion and bending of a naturally twisted rod which has the same accuracy as that
which is inherent in the classical Saint-Venant problem® concerning the bending and torsion of a prismatic, linearly
elastic solid, that is, the equilibrium equations in the bulk of the solid and the boundary conditions on the lateral surface
are satisfied exactly, while the boundary conditions on the ends of the beam are satisfied approximately in the integral
Saint-Venant sense.

According to relation (1.13), the principal vector of the forces which act in an arbitrary cross-section of the rod
y3 =const accompanying deformation (1.6) has the form

F(xy) = [[d;-Ddo = Fih + Fh, + Fiiy; Fy = [[Dydo = const 2.1

Since the vectors h; and h, depend on y3, it follows from expression (2.1) and the condition for the equilibrium of the
part of the rod included between the two planes y3 =a and y3 = b, where a and b are arbitrary numbers, that F| = F, =0.
Consequently, the principal vector of the forces in a cross-section of the beam is the same, in the case of torsional and
stretching compression deformation (1.6), for all cross-sections and has the direction of the unit vector i3.

We shall calculate the principal moment M of the forces in a cross-section y3 = const with respect to a certain point
in the line Xj =X, =0. According to expressions (1.6), this line is the axis of the helical surface into which the lateral
surface of the rod is converted after deformation. Since the principal vector is parallel to the above mentioned line, the
moment is independent of the datum point on the X3 axis, which enables one to calculate the moment about the point
X1 =X =X3=0. On taking account of the fact that F; = F, =0, we find, using relations (1.7) and (1.13), that

M(x;) = -[[d;-DxRdo = M;h, 2.2)

M, = II(D33“2 —D3uz)do, M, = ”(D31“3 —Dysuy)do, My = ”(Dn“l - D3uy)do (2.3)

It follows from these considerations and the conditions for the balance of the moments of all the forces applied to the
segment of the rod a <y3 <b that M; =M, =0.

Thus, it has been proved that the realization of the deformation (1.6) requires the application of a system of forces
to the ends of a naturally twisted beam, which is statically equivalent to a longitudinal force F3 acting at a point of the
X3 axis and a torque M3. Henceforth, when considering the problem of stretching and torsion, we shall assume that
the cross-section of the beam o possesses central symmetry, that is, it is superimposed on itself after a rotation of 180°
about the axis of the rod. A cross-section having the shape of the letter Z serves as an example. Cross-sections having
two axes of symmetry clearly also belong to this class. If the y3 axis passes through the centres of cross-sections with
central symmetry, then the coordinate transformation which leaves the domain o unchanged has the form

YI ==V, Y2 = Vi Y3 =3

We now consider the two-dimensional boundary-value problem which describes the torsion and stretching compression
of a naturally twisted rod and consists of Egs. (1.14), (1.17) and (1.18) and the boundary conditions (1.15). We make
the following replacement of the independent variables and the unknown functions.

] ] 1 1 '
VI = =Y, Y2 = =Yy, Y3 = Y33 U = U, Uy = —Uy,

Uy = Uy 24

Theorem. In the case of a homogeneous, isotropic, elastic solid, the boundary-value problem (1.14), (1.15), (1.17),
(1.18) in the domain o, which possesses central symmetry, is invariant under the transformation (2.4).

Proof. According to relations (1.9) and (1.10), transformation (2.4) generates the following transformation of the
components of the gradient of the deformation and the measure of Cauchy deformation

Cpq = CP‘I’

G, =G

pPaq rq’

C'p3 = _Cp3’ C'sp = “C3p’ C'33 = Cy 2.5)
G‘[)3 = “G '

b3 Gy =Gy pg=1,2
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On the basis of formulae (2.5), the invariants of the measure of Cauchy deformation

I, =G, I, = %(trzG—ter), I, = detG
are transformed as follows:
1;‘, =1, k=123 (2.6)

In the case of an isotropic, elastic material, the Kirchhoff stress tensor P, being an isotropic function of the tensor G,
can be represented in the form® (E is the unit tensor)

P =aqayl,, 1, I))E+a,(1,, 1, I3)G +a,(1,, I, I3)G2 2.7
The rule for transforming the components of the Piola stress tensor in expansion (1.13) follows from relations (2.5)—(2.7)

D,, = D,, D,y =-D,, Dj,=-Dy, Dy =Dy pqg=12 (2.8)
The invariance of Egs. (1.14), the boundary conditions (1.15) and relations (1.17)—(1.19) under the substitutions (2.4),
(2.5) and (2.8) is now immediately obvious, which proves the theorem. [

Remark. The theorem also holds in the case of an orthotropic medium if one of the axes of orthotropy is parallel
to the y3 axis of the rod. Moreover, inhomogeneity of the material is permitted with respect to the coordinates y;
and y, subject to the condition that the explicit dependence of the elastic potential on these coordinates satisfies the
requirement

W(G y1:¥2) = WGy —yy,—y2)

Suppose ur =fi(y1, y2) (k=1, 2, 3) is the solution of the boundary-value problem (1.14), (1.15), (1.17), (1.18). By
virtue of the theorem, the functions

up = —f1(=y1,=y2)s Uy = =fo(=y1,=v2)s U3 = f3(=yy,~Y,)
satisfy the same boundary-value problem. From the uniqueness of the solution, we obtain
Fp=yi,=y2) = _fp(yl’y?_)’ F3(=y1-v2) = f3(vy2), p =12

Thus, if the cross-section possesses central symmetry, the solution of the two-dimensional boundary-value problem
possesses the property

Up(=y1,=y2) = =up(¥1, ¥2)s  Uz(=yy,=y,) = uz(yy, ¥,) 2.9
From relations (1.6) and (2.9), we have the equalities
X, =y, =y ¥3) = =X,y ¥ ¥3), p =12 (2.10)

which imply that the cross-section of the horizontal plane of the deformed beam also possesses central symmetry and
the X3 axis, that is, the line X1 =X, =0, passes through the centres of all the cross-sections. In the special case, when
the point y; =y =0 belongs to the domain o, that is, the naturally twisted beam does not have a cavity in the central
part, it follows from equalities (2.10) that X,,(0, 0, y3) =0 (p=1, 2). This implies that a material straight line passing
through the centres of the cross-sections of the undeformed rod remains a straight line after the stretching compression
of the rod and also intersects the horizontal planes at the point y; =y, =0.

Hence, the longitudinal force F3, which is the equivalent of the forces which have to be applied to the end of the
beam to produce the deformation (1.6), pass through the centre of the cross-section in the case of a beam with a centrally
symmetric cross-section.

After solving the two-dimensional boundary-value problem in the cross-section o, the longitudinal force F3 and the
torque M3 will be known functions of the parameters s and \. Inverting these functions, we determine the values of
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the angle of twist y — o and the axial elongation N\ — 1 using the known values of the longitudinal force and the torque.
The energy relations of the non-linear theory of torsion and stretching of a naturally twisted rod

oll(y, A
Fi(y,\) = %’ Ms(y, ) = 8115_\\9'/’,7»)
@2.11)

My, %) = [[Wii v W, )3 v, Ado

are proved by the method in Ref. 7. Here, IT is a functional of the linear potential energy of an elastic rod calculated on
the solution ux(y1, y2, ¥, N) of the two-dimensional boundary-value problem (1.14), (1.15), (1.17), (1.18). According
to relations (2.11), the function IT({s, N\) completely defines the deformation properties of the rod in the case of
stretching compression and torsion and, in particular, describes the non-linear interaction of the longitudinal and
torsional deformations.

In the problem of the three-dimensional bending of a naturally twisted beam, it can be proved, in a similar way to
that described earlier in Ref. 7, that the onset of the deformation (1.19) requires the application of a system of forces
to the ends of the beam, which is statically equivalent to the resultant of F = Fi; and the moment M = Mi;. The force
F is applied at a point of the X axis, that is, the axis of the helical surface into which the lateral surface of the beam is
transformed after deformation (1.19). The energy relations

J(w, 1) Jll(w, [)

Fio,h = —=—5— )

M (w1) =
which are similar to (2.11), hold for the magnitude of the force F; and the magnitude of the moment M, where I1(w,

]) is the linear potential energy of the rod calculated for the solution of the two-dimensional boundary-value problem
(1.25), (1.27), (1.15).

3. Compatibility equations and stress functions

It has been assumed above that the functions ui(y1, y2) and vi(y1, ¥2) (k=1, 2, 3) are the principal unknowns in the
two-dimensional boundary-value problems (1.14), (1.15), (1.17), (1.18) and (1.25), (1.27) respectively. Formulations
of the problem for a cross-section of a beam with another choice of the unknowns are possible. For example, the
components of the gradient of the deformation Cg can be adopted as the principal unknowns, while the functions uz (vi)
can be eliminated from the system of equations. To do this, it is necessary to consider the problem of determining the
functions uy(vg) in the domain o from the system of Egs. (1.9), ((1.22)), assuming that the functions Cy are specified.
The necessary and sufficient conditions for these systems to be solvable, which can be referred to as compatibility
equations, have the form

p+1
YC,,+(-1)" " aCs_,) +oy,Cyy ,—0ay,Cpy ,+C5y , =0

chl_(_l)p+laC(3fp)2_ay1C22.p+a‘yZClZ.p_C32,p =0, p=12 (3.1
Ci32-Cp =0, Cyz+0yCpz—0y,C3-1 =0
in the stretching and torsion problem, and
U)sz*(—l)pHaC(3~p)3+(x)’zC13.p—0‘.\’1C23.p—C33,p =0
®C,3+(~1)" " UC5_ s~ 0y,Cpy , + 0y Coy y+Csy , = 0; p = 1,2 (3.2)

Ci12-Cy 1 =0, Cy—oy,Cpy+oy,Cy -1 =0

in the bending problem.

When conditions (3.1) are satisfied, the functions u; and u, are uniquely defined by relations (1.9), using the
functions Cg which have been specified in the simply connected domain o, while the function u3 is defined apart
from an arbitrary additive constant. If the domain o is multiply connected, the function u3 will, generally speaking, be
multiple-valued.
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Satisfying conditions (3.2) guarantees the existence of the functions vi(k = 1, 2, 3) which are determined from
relations (1.22). In the case of a multiply connected domain o, the functions v, and v3 are found uniquely while the
function v can be multiple-valued.

The compatibility equations (3.1), together with the equilibrium equations (1.14), in which the stresses Dy are
assumed to be expressed in terms of the quantities Cj;(7, j=1, 2, 3) by means of the constitutive relations (1.12) and
boundary conditions (1.15), constitute a formulation of a boundary-value problem for the domain o with the unknown
functions Cyj(y1, y2). The boundary-value problem describes the torsion and stretching compression of a naturally
twisted rod. Only the last condition of the two necessary conditions for the solution of (1.17) to be unique now remains
in which cosf has to be expressed in terms of the components of the tensor C using relations (1.9) and (1.18).

The system of equations in the components of the gradient of the deformation in the problem of the three-dimensional
bending of a beam consists of the compatibility Eq. (3.2), the equilibrium Eq. (1.25) and, also, the second integral of
relation (1.27) in which, in accordance with relations (1.22), the quantities Cp,,, must appear instead of the derivatives
Un. p-

Ii"he above-mentioned formulations of the boundary-value problem for a cross-section of a beam with the quantities
Cjx as the unknowns do not have a variational formulation. This drawback can be removed by adopting the components
of the Piola stress tensor D,; as the unknown functions. To do this, it is necessary to express the quantities Cy in terms
of the stresses D,; following the procedure which has been explained earlier in Ref. 7. As a result, the compatibility
Egs. (3.1) and (3.2) will be written in terms of the stresses D,;.

It is easily verified that the equilibrium Eq. (1.14) are identically satisfied by the following substitution

Dy = ay,H, +y®,;, Dy, = —0y,H +yP, (12)
Dy = @ -0y, P33, Dyy = - P + 0y @y3, D3z = Py (3.3)
Dy =-H), Dy =H;; H,=®, +®,,,, p=12

and that the equilibrium equations (1.25) are identically satisfied by the substitution

Dy = Xo,2=0y2X31> Doy = 0y X31=%Xo, 1> P31 = X3

S
I

p = Oyt CD0Ks o Dy, = 04y, — (D)0 K5, (3.4)
Dy = K3, D3y = Kyi Kp=3ipi+Xap2 P =23

We shall call the six functions ®g, @11, P12, P21, 22, P33, referring to the problem of the stretching and torsion of
a beam, and the six functions xo, X12, X22, X13, X23, X31, referring to the problem of three-dimensional bending, the
stress functions. They have to satisfy the compatibility Egs. (3.1) and (3.2) and the boundary conditions on the contour
do of the cross-section o respectively. These boundary conditions are derived from relations (1.15), (3.3), (3.4) and
have the form

n®,,+n,®, =0, n®,+n,d, =0, dDy/ds =0 (3.5)
in the torsion problem and
0xXp/0s = 0, nYpa+nyXo =0, nyxi3+nX; =0 (3.6)

in the bending problem. Here s is the current length of the arc of the boundary contour. If the domain o is simply
connected, the boundary conditions for the functions ®( and x¢ can be replaced, without loss of generality, in conditions
(3.5) and (3.6) by the conditions

@gly6 = 0, Xolps = 0

The replacement of the unknowns ug(yv1, y2), vk(y1, y2) by the stress functions in the two-dimensional boundary-value
problem for the domain o can be characterized as a transformation of a problem of the Neumann type with non-linear
boundary conditions into a problem of the Dirichlet type with linear boundary conditions.

The use of stress functions enables us to provide variational formulations of two-dimensional problems for the
cross-section of a beam. In particular, the functional of the Castigliano variational principle (the principle of additional
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energy) in the problem of stretching and torsion is written in the form

N[ @y, @, O3] = [[V(Py, @, P33)do, pog = 1,2 3.7)

Here V is the specific additional energy of the elastic material>® which is a function of the Piola stress tensor and is
related to the specific potential energy of deformation W(C) by a Legendre transformation. It is assumed in equality
(3.7) that the components of the Piola tensor are expressed in terms of the stress functions using formulae (3.3). The
stress functions which are varied must be differentiable and satisfy boundary conditions (3.5). The compatibility Eq.
(3.1) follows from the stationarity of the functional IT.

Other variational principles of the non-linear theory of the torsion and bending of a naturally twisted beam are
formulated in a similar way to that proved earlier in Ref. 7.

4. The torsion and stretching of a circular cylinder with helical anisotropy

In the case of a definite type of curvilinear anisotropy and inhomogeneity of the material, a rod of circular cross-
section can be regarded, as for as its mechanical properties are concerned, as a naturally twisted body. A cylinder with
helical (spiral) anisotropy serves as an example. Problems the deformation of a rod with this type of anisotropy have
been considered earlier in Refs. 4,9 within the framework of the linear theory of elasticity.

Consider an elastic solid in the form of a hollow circular cylinder. We will denote the cylindrical coordinates of the
points of the solid in the reference configuration by 5 ¢ and z and the unit vectors tangential to the coordinate lines by
ey, €p, €;. We shall assume that the elastic material is orthotropic. The directions of the principal axes of orthotropy at
each point of the solid are specified by the orthonormal basis qi, q2, 3. The orientation of this basis with respect to
the unit vectors e,, €, €; is defined by the formulae

q, =€, q, = eq)cosr(r)+ezsint(r)

as “.n

—e(psinr(r) +e_.cosT(r)

According to formulae (4.1), the vectors q2 and q3 at each point of the solid with the coordinates r, ¢ and z have the
direction of the tangents to the helices located on the cylinder of radius r and to the generatrices of the angles T and
/2 — 7 with the plane z=const. In the general case, the angle 7 is assumed to be a differentiable function of the radial
coordinate r.

The specific potential energy of deformation of a linearly elastic, orthotropic material W can be represented!? as a
function of the following form

W = W(a,, ay, as, ayy, a3, ay, ag; r) 4.2)
a = Q- G-q, a, = (‘Ik‘G‘qnz)z’ kym =1,2,3, m>k

4.3)
ay = detG

The explicit dependence of the elastic potential on the radial coordinate in (4.2) occurs in the case of radial inho-
mogeneity of the material. From relations (1.12), (4.2) and (4.3), we find the expression for the Kirchhoff stress
tensor

3

1 ow
EP = . Z_ laa_kmqk'G‘qm(qk®qm-*'qm®qk)+
m>k (4.4)

3
1’4 ow 4
+ —q, ® —
k21 aaqu At aaoaOG
In the case of an incompressible material when ag = 1, the last term in Eq. (4.4) is replaced by the expression —pG ™!,
where p is the pressure, which is not defined in terms of the deformation and is an unknown function of the coordinates.
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We will denote the cylindrical coordinates of the points of the solid after deformation by R, ® and Z and seek a
solution of the problem of the torsion and stretching of a circular cylinder in the form of a special case of the family
(1.6)

R=R(r), ®=¢+vyz, Z=Az 4.5)

From relations (4.5), we find a representation of the gradient of the deformation and of the measure of Cauchy
deformation
_dR

C = Ee,@e,ﬁ§e¢®e¢+\pRez®e¢+}»ez®e:

2 2 2
G = (g}_e) e ®e + %e(p@ewg(eq,@eﬁq@ew)+(W2R2+x2)ez®e:
r

dr
2 2 22 4.6)
G = (‘;_I:) e, ®e, + [r_z + WT:-J% ® e, \XL:(% Qe +e, Qe+ %ez ®e,
R 2 2 .
e; = €,.cos(P-9) +eysin(P-¢)
ep = —e,sin(P—) +e,cos(P - o)
The equalities
,:6-9,=q3-G-q, =0
follow from relations (4.1) and (4.6), and from these and from formulae (4.4) and (4.6), we obtain
q, ' P-q=q;-P-q, =0 “@.7)

Taking account of the fact that D=P - C and relations (4.1), (4.6) and (4.7), we find the representation of the Piola
stress tensor in the problem of the torsion of a circular cylinder made of a compressible material with helical orthotropy
D = D,p(r)e,®eg+ Dygp(r)e,®eq+ Dy (r)e,®e +

+ Dz(p(l‘)ez ® e(P + Dzz(r)ez ® €, (48)

Since the components of the tensor D in equality (4.8) are expressed using the constitutive relations (4.4) in terms of
the function R(r), substitution of expression (4.8) into the equilibrium Eq. (1.11) leads to a linear second-order ordinary
differential equation in this function
dD rR D rR ™~ D oD
+
dr r

~yD_4 =0 (4.9)

In the case of an incompressible material, the Piola stress tensor is expressed not only in terms of the function R(r),
but also in terms of the unknown pressure p(r, ¢, z):

D = dW/dC-pC "

Two of the three equilibrium Eq. (1.11) now reduce to the form

apldg = 0, dpldz = 0

The radial coordinate of the deformed cylinder is determined from the incompressibility condition

212 52
detG = (45) 7»{3 =1
dr 2

r
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and has the form
R =R +X'("=r). R, =R(r) (4.10)

where r; and R are the internal radius of the cylinder before and after deformation respectively. In the case of an
incompressible material, Eq. (4.9) serves to determine the pressure function p(r), which is found apart from a single
arbitrary constant. This constant, as well as the constant R, are determined from the boundary conditions on the
internal r=r| and external r=rq surfaces of the cylinder

I)rR|,f=rl = DrR!,«:,«O =0 (411)

In the case of a compressible material, the constraints (4.11) serve as boundary conditions for the second-order equation
in R(r).

By virtue of representation (4.8), the system of stresses acting in the cross-section z = const leads to a longitudinal
force F3 and a torque M3, which are expressed by the formulae

Fyhy) = ZTtJ.Dzzrdr, M\, ) = ZTCJDerdr

a n

Hence, the Saint-Venant problem on the torsion and stretching of a non-linearly elastic circular cylinder with helical
anisotropy has been reduced to a boundary-value problem for an ordinary differential equation.
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